A numerical technique for solving a class of 2D variational problems using Legendre spectral method

Authors

  • Fahimeh Soltanian Department of Mathematics, Payame Noor University, P. O. BOX 19395-3697, Tehran, Iran
  • Kamal Mamehrashi Department of Mathematics, Payame Noor University, P. O. BOX 19395-3697, Tehran, Iran
Abstract:

An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage of the Ritz method is that it provides greater flexibility in which the boundary conditions are imposed at the end points of the interval. Furthermore, compared with the exact and eigenfunction solutions of the presented problems, the satisfactory results are obtained with low terms of basis elements. The convergence of the method is extensively discussed and finally two illustrative examples are included to demonstrate the validity and applicability of the proposed technique.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A New Modification of Legendre-Gauss Collocation Method for Solving a Class of Fractional Optimal Control Problems

In this paper, the optimal conditions for fractional optimal control problems (FOCPs) were derived in which the fractional differential operators defined in terms of Caputo sense and reduces this problem to a system of fractional differential equations (FDEs) that is called twopoint boundary value (TPBV) problem. An approximate solution of this problem is constructed by using the Legendre-Gauss...

full text

A spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems

In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...

full text

A Survey of Direct Methods for Solving Variational Problems

This study presents a comparative survey of direct methods for solving Variational Problems. Thisproblems can be used to solve various differential equations in physics and chemistry like RateEquation for a chemical reaction. There are procedures that any type of a differential equation isconvertible to a variational problem. Therefore finding the solution of a differential equation isequivalen...

full text

Applying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems

In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...

full text

A numerical algorithm for solving a class of matrix equations

In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$  by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.

full text

A Novel Successive Approximation Method for Solving a Class of Optimal Control Problems

This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 4

pages  471- 482

publication date 2018-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023